Tuesday, July 13, 2010

Free running and primal workouts: Both look awesome, and dangerous

The other day I showed a YouTube MovNat video clip to one of my sons, noting the serious fitness of Erwan Le Corre. I also noted that the stunts were somewhat dangerous, and that they tried to replicate some of the movements that our Paleolithic ancestors had to do on a regular basis. That is, those movements are part of what one could call a primal workout.

My son looked at me and laughed, as if asking me if I was really being serious. Why? Well, he is into breakdancing (a.k.a. b-boying), and also does a bit of something called "free running". If you don’t know what free running is, take a look at this Wikipedia article.

Here are a couple of YouTube video clips on free running: clip 1, and clip 2. The moves do look a lot more hardcore than the ones on the MovNat video clip. (The reason for my son's reaction.) But, to be fair, the environments and goals are different. And, in terms of danger, some of these free running moves are really at the high end of the scale.

And, if you are interested, here are a couple of instructional YouTube video clips prepared by my sons: this one by my oldest, and this by my second oldest. (We have four children.) I have been telling them to be careful with those “airchairs” – the moves where all the weight is placed on one hand. It just looks like too much pressure on the joints of one single arm.

Two of the things that I like the most about primal workouts like the MovNat ones are the variety of movements, and the proximity to nature. Those two elements can potentially help with sticking to an exercise program in the long run, which is what matters most. Most people get very bored of exercising after a few months. Free running seems to be more competitive, and more dangerous.

Both free running and primal workouts are practiced by some people as their main form of exercise. In those cases, they appear to lead to body types that are similar to those of the hunter-gatherers on this post. I cannot help but notice that those body types are more like that of a sprinter than that of a typical bodybuilder.

The feats that those body types enable are feats of relative, not absolute, strength. This makes sense, as our Paleolithic ancestors were too smart to hunt prey or fight off predators (or even each other) with their bare hands. Spears and stones were formidable weapons. Paleolithic ancestors who were very adept at using weapons would probably be like skilled gunfighters in the American Old West – menacing, with the advantage of being able to use their skills to feed themselves and others.

Being lean, strong, and agile – all at the same time – arguably was one of the keys to survival in the Paleolithic.

Thursday, July 8, 2010

Our body’s priority is preventing hypoglycemia, not hyperglycemia

An adult human has about 5 l of blood in circulation. Considering a blood glucose concentration of 100 mg/dl, this translates into a total amount of glucose in the blood of about 5 g (5 l x 0.1 g / 0.1 l). That is approximately a teaspoon of glucose. If a person’s blood glucose goes down to about half of that, the person will enter a state of hypoglycemia. Severe and/or prolonged hypoglycemia can cause seizures, comma, and death.

In other words, the disappearance of about 2.5 g of glucose from the blood will lead to hypoglycemia. Since 2.5 g of glucose yields about 10 calories, it should be easy to see that it does not take much to make someone hypoglycemic in the absence of compensatory mechanisms. An adult will consume on average 6 to 9 times as many calories just sitting quietly, and a proportion of those calories will come from glucose.

While hypoglycemia has severe negative health effects in the short term, including the most severe of all - death, hyperglycemia has primarily long-term negative health effects. Given this, it is no surprise that our body’s priority is to prevent hypoglycemia, not hyperglycemia.

The figure below, from the outstanding book by Brooks and colleagues (2005), shows two graphs. The graph at the top shows the variation of arterial glucose in response to exercise. The graph at the bottom shows the variation of whole-body and muscle glucose uptake, plus hepatic glucose production, in response to exercise. The full reference to the Brooks and colleagues book is at the end of this post.


Note how blood glucose increases dramatically as the intensity of the exercise session increases, which means that muscle tissue consumption of glucose is also increasing. This is particularly noticeable as arm exercise is added to leg exercise, bringing the exercise intensity to 82 percent of maximal capacity. This blood glucose elevation is similar to the elevation one would normally see in response to all-out sprinting and weight training within the anaerobic range (with enough weight to allow only 6 to 12 repetitions, or a time under tension of about 30 to 70 seconds).

The dashed line at the bottom graph represents whole-body glucose uptake, including what would be necessary for the body to function in the absence of exercise. This is why whole-body glucose uptake is higher than muscle glucose uptake induced by exercise; the latter was measured through a glucose tracing method. The top of the error bars above the points on the dashed line represent hepatic glucose production, which is always ahead of whole-body glucose uptake. This is our body doing what it needs to do to prevent hypoglycemia.

One point that is important to make here is that at the beginning of an anaerobic exercise session muscle uses up primarily local glycogen stores (not liver glycogen stores), and can completely deplete them in a very localized fashion. Muscle glycogen stores add up to 500 g, but intense exercise depletes glycogen stores locally, only within the muscles being used. Still, muscle glycogen use generates lactate as a byproduct, which is then used by the liver to produce glucose (gluconeogenesis) to prevent hypoglycemia. The liver also makes some glycogen (glycogenesis) during this time. This means that it is not only pre-exercise liver glycogen that is being used to maintain blood glucose levels above whole-body glucose uptake. This makes sense, since the liver stores only about 100 g of glycogen.

The need to prevent hypoglycemia at all costs is the main reason why there are several hormones that increase blood glucose, while apparently there is only one that decreases blood glucose. Examples of hormones that increase blood glucose are cortisol, adrenaline, noradrenaline, growth hormone, and, notably, glucagon. The only hormone that decreases blood glucose levels in a significant way is insulin. These hormones do not increase or decrease blood glucose directly; they signal to various tissues to either secrete or absorb glucose.

Evolution typically prioritizes processes that have a higher impact on reproductive success, and one must be alive to successfully reproduce. Hypoglycemia causes death. Often those processes that have a significant effect on reproductive success rely on redundant mechanisms. So our evolved mechanisms to deal with hypoglycemia are redundant. Evolution is not an engineer; it is a tinkerer!

What about hyperglycemia – doesn’t it cause death? Well, not in the short term, so related selection pressures were fairly small compared to those associated with hypoglycemia. Besides, there were no foods rich in refined carbohydrates and sugars in the Paleolithic - e.g., white bread, bagels, doughnuts, pasta, cereals, fruit juices, regular sodas, table sugar. Those are the foods that contribute the most to hyperglycemia.

Reference:

Brooks, G.A., Fahey, T.D., & Baldwin, K.M. (2005). Exercise physiology: Human bioenergetics and its applications. Boston, MA: McGraw-Hill.

Saturday, July 3, 2010

Power napping, stress management, and jet lag

Many animals take naps during the day. Our ancestors probably napped during the day too. They certainly did not spend as many hours as we do under mental stress. In fact, the lives of our Paleolithic ancestors would look quite boring to a modern human. Mental stress can be seen as a modern poison. We need antidotes for that poison. Power napping seems to be one of them.

(Source: Squidoo.com)

Power napping is a topic that I have done some research on, but unfortunately I do not have access to the references right now. I am posting this from Europe, where I arrived a few days ago. Thus I am labeling this post “my experience”. Hopefully I will be able to write a more research-heavy post on this topic in the near future. I am pretty sure that there is a strong connection between power napping and stress hormones. Maybe our regular and knowledgeable commenters can help me fill this gap in their comments on this post.

Surprisingly, jet lag has been only very minor this time for me. The time difference between most of Europe and Texas is about 8 hours, which makes adaptation very difficult, especially coming over to Europe. In spite of that, I slept during much of my first night here. The same happened in the following nights, even though I can feel that my body is still not fully adapted to the new time zone.

How come? I am all but sure that this is a direct result of my recent experience with power napping.

I have been practicing power napping for several months now. Usually in the middle of the afternoon, between 3 and 4 pm, I lie down for about 15 minutes in a sleeping position on a yoga mat. I use a pillow for the head. I close my eyes and try to clear my mind of all thoughts, focusing on my breathing, as in meditation. When I feel like I am about to enter deep sleep, I get up. This usually happens 15 minutes after I lie down. The sign that I am about to enter deep sleep is having incoherent thoughts, like in dreaming. Often I have muscle jerks, called hypnic jerks, which are perfectly normal. Hypnic jerks are also a sign that it is time for me to get up.

After getting up I always feel very refreshed and relaxed. My ability to do intellectual work is also significantly improved. If I make the mistake of going further, and actually entering a deep sleep stage, I get up feeling very groggy and sleepy. So the power nap has to end at around 15 minutes for me. For most people, this time ranges from 10 to 20 minutes. It seems that once one enters a deep sleep phase, it is better to then sleep for at least a few hours.

Power napping is not as easy as it sounds. If one cannot enter a state of meditation at the beginning, the onset of sleep does not happen. You have to be able to clear your mind of thoughts. Focusing on your breathing helps. Interestingly, once you become experienced at power napping, you can then induce actual sleep in almost any situation – e.g., on a flight or when you arrive in another country. That is what happened with me during this trip. Even though I have been waking up at night since I arrived in Europe, I have been managing to go right back to sleep. Previously, in other trips to Europe, I would be unable to go back to sleep after I woke up in the middle of the night.

Power napping seems to also be an effective tool for stress management. In our busy modern lives, with many daily stressors, it is common for significant mental stress to set in around 8 to 9 hours after one wakes up in the morning. For someone waking up at 7 am, this will be about 3 to 4 pm in the afternoon. Power napping, when done right, seems to be very effective at relieving that type of stress.