Sunday, January 31, 2010

Vitamin D deficiency, seasonal depression, and diseases of civilization

George Hamilton admits that he has been addicted to sunbathing for much of his life. The photo below (from: phoenix.fanster.com), shows him at the age of about 70. In spite of possibly too much sun exposure, he looks young for his age, in remarkably good health, and free from skin cancer. How come? Maybe his secret is vitamin D.


Vitamin D is a fat-soluble pro-hormone; not actually a vitamin, technically speaking. That is, it is a substance that is a precursor to hormones, which are known as calcipherol hormones (calcidiol and calcitriols). The hormones synthesized by the human body from vitamin D have a number of functions. One of these functions is the regulation of calcium in the bloodstream via the parathyroid glands.

The biological design of humans suggests that we are meant to obtain most of our vitamin D from sunlight exposure. Vitamin D is produced from cholesterol as the skin is exposed to sunlight. This is one of the many reasons (see here for more) why cholesterol is very important for human health.

Seasonal depression is a sign of vitamin D deficiency. This often occurs during the winter, when sun exposure is significantly decreased, a phenomenon known as seasonal affective disorder (SAD). This alone is a cause of many other health problems, as depression (even if it is seasonal) may lead to obesity, injury due to accidents, and even suicide.

For most individuals, as little as 10 minutes of sunlight exposure generates many times the recommended daily value of vitamin D (400 IU), whereas a typical westernized diet yields about 100 IU. The recommended 400 IU (1 IU = 25 ng) is believed by many researchers to be too low, and levels of 1,000 IU or more to be advisable. The upper limit for optimal health seems to be around 10,000 IU. It is unlikely that this upper limit can be exceeded due to sunlight exposure, as noted below.

Cod liver oil is a good source of vitamin D, with one tablespoon providing approximately 1,360 IU. Certain oily fish species are also good sources; examples are herring, salmon and sardines. For optimal vitamin and mineral intake and absorption, it is a good idea to eat these fish whole. (See here for a post on eating sardines whole.)

Periodic sun exposure (e.g., every few days) has a similar effect to daily exposure, because vitamin D has a half-life of about 25 days. That is, without any use by the body, it would take approximately 25 days for vitamin D levels to fall to half of their maximum levels.

The body responds to vitamin D intake in a "battery-like" manner, fully replenishing the battery over a certain amount of time. This could be achieved by moderate (pre-sunburn) and regular sunlight exposure over a period of 1 to 2 months for most people. Like most fat-soluble vitamins, vitamin D is stored in fat tissue, and slowly used by the body.

Whenever sun exposure is limited or sunlight scarce for long periods of time, supplementation may be needed. Excessive supplementation of vitamin D (i.e., significantly more than 10,000 IU per day) can cause serious problems, as the relationship between vitamin D levels and health complications follows a U curve pattern. These problems can be acute or chronic. In other words, too little vitamin D is bad for our health, and too much is also bad.

The figure below (click on it to enlarge), from Tuohimaa et al. (2009), shows two mice. The one on the left has a genetic mutation that leads to high levels of vitamin D-derived hormones in the blood. Both mice have about the same age, 8 months, but the mutant mouse shows marked signs of premature aging.


It is important to note that the skin wrinkles of the mice on the left have nothing to do with sun exposure; they are associated with excessive vitamin D-derived hormone levels in the body (hypervitaminosis D) and related effects. They are a sign of accelerated aging.

Production of vitamin D and related hormones based on sunlight exposure is tightly regulated by various physiological and biochemical mechanisms. Because of that, it seems to be impossible for someone to develop hypervitaminosis D due to sunlight exposure. This does NOT seem to be the case with vitamin D supplementation, which can cause hypervitaminosis D.

In addition to winter depression, chronic vitamin D deficiency is associated with an increased risk of the following chronic diseases: osteoporosis, cancer, diabetes, autoimmune disorders, hypertension, and atherosclerosis.

The fact that these diseases are also known as the diseases of civilization should not be surprising to anyone. Industrialization has led to a significant decrease in sunlight exposure. In cold weather, our Paleolithic ancestors would probably seek sunlight. That would be one of their main sources of warmth. In fact, one does not have to go back that far in time (100 years should be enough) to find much higher average levels of sunlight exposure than today.

Modern humans, particularly in urban environments, have artificial heating, artificial lighting, and warm clothes. There is little or no incentive for them to try to increase their skin's sunlight exposure in cold weather.

References:

W. Hoogendijk, A. Beekman, D. Deeg, P. Lips, B. Penninx. Depression is associated with decreased 25-hydroxyvitamin-D and increased parathyroid hormone levels in old age. European Psychiatry, Volume 24, Supplement 1, 2009, Page S317.

P. Tuohimaa, T. Keisala, A. Minasyan, J. Cachat, A. Kalueff. Vitamin D, nervous system and aging. Psychoneuroendocrinology, Volume 34, Supplement 1, December 2009, Pages S278-S286.

Saturday, January 30, 2010

Cancer patterns in Inuit populations: 1950-1997

Some types of cancer have traditionally been higher among the Inuit than in other populations, at least according to data from the 1950s, when a certain degree of westernization had already occurred. The incidence of the following types of cancer among the Inuit has been particularly high: nasopharynx, salivary gland, and oesophageal.

The high incidence of these “traditional” types of cancer among the Inuit is hypothesized to have a strong genetic basis. Nevertheless some also believe these cancers to be associated with practices that were arguably not common among the ancestral Inuit, such as preservation of fish and meat with salt.

Genetic markers in the present Inuit population show a shared Asian heritage, which is consistent with the higher incidence of similar types of cancer among Asians, particularly those consuming large amounts of salt-preserved foods. (The Inuit are believed to originate from East Asia, having crossed the Bering Strait about 5,000 years ago.)

The incidence of nasopharynx, salivary gland, and oesophageal cancer has been relatively stable among the Inuit from the 1950s on. More modern lifestyle-related cancers, on the other hand, have increased dramatically. Examples are cancers of the lung, colon, rectum, and female breast.

The figure below (click on it to enlarge), from Friborg & Melbye (2008), shows the incidence of more traditional and modern lifestyle-related cancers among Inuit males (top) and females (bottom).


Two main lifestyle changes are associated with this significant increase in modern lifestyle-related cancers. One is increased consumption of tobacco. The other, you guessed it, is a shift to refined carbohydrates, from animal protein and fat, as the main source of energy.

Reference:

Friborg, J.T., & Melbye, M. (2008). Cancer patterns in Inuit populations. The Lancet Oncology, 9(9), 892-900.

How to break a coconut

The coconut is often presented as a healthy food choice, which it is, as long as you are not allergic to it. Coconut meat has a lot of saturated fat, which is very good for the vast majority of us.

(I posted about this issue elsewhere on this blog: my own experience and research suggest that saturated fat is very healthy for most people as long as it is NOT consumed together with refined carbs and sugars from industrialized food products.)

Coconut water is a good source of essential minerals, particularly magnesium and potassium. So is coconut meat, which is rich in iron, copper, manganese, and selenium. Coconut meat is also an good source of folate and an excellent source of dietary fiber.

If you are buying coconuts at a supermarket, I suggest choosing coconuts that have a lot of water in them. They seem to be the ones that taste the best. Just pick a coconut up and shake it. If it feels heavy and full of water, that’s the one.

First you need to make some holes on the coconut shell to extract the water. I recommend using a hammer and screwdriver. The screwdriver should be used only for this purpose, so you can keep it clean. Nails can be too thin. Place the coconut over a mitten or towel, and make holes on the dark spots (usually three) using the hammer and screwdriver.


Once you puncture the coconut, move the screwdriver a bit to enlarge each hole. Then place the coconut on a cup or thermos, with the holes pointing downwards, and let the water flow out of it. Normally I use a thermos, so that I can keep the coconut water fresh for later consumption.


As soon as all the coconut water is out, hold the coconut with a mitten in one hand, and strike it with the hammer with the other hand. The key here is to hold the coconut with your hand. You need to strike it hard. It is a good idea to do this inside or right above a kitchen sink so that the shell pieces fall into it.


Do not place the coconut against a hard surface (e.g., ceramic tiles), otherwise you can either break that surface or send pieces of the coconut flying all over the pace. Strike different areas of the coconut until it breaks into 5 to 7 pieces.

Finally, remove the meat of the coconut with a butter knife. The hand that holds the knife should be protected with a mitten, because you will have to apply pressure with it.


Store the coconut water in a sealed thermos, and the coconut meat pieces in a sealed container, both in the refrigerator, to preserve their freshness.

Coconut water and meat have a slightly sweet taste because of their sugar content, which is small and packed in with a lot of fiber. 100 g of coconut meat has about 15 g of carbs, of which 9 g is dietary fiber; that is, 100 g of coconut meat has only 6 g of net carbs.